Electrostatics Worksheet

1. What is the electrostatic force between two metal spheres, each having 5 C of charge. The balloons are 0.30 m apart.
2. Suppose that two point charges, each with a charge of +1 Coulomb are separated by a distance of one meter. (a) Will they attract or repel? (b) Determine the magnitude of the electrical force between them.
3. Two balloons are charged with an identical quantity and type of charge: - 0.0025 C . They are held apart at a separation distance of 8 m . Determine the magnitude of the electrical force of repulsion between them.
4. Two charged boxes are 4 meters apart from each other. The blue box has a charge of +0.000337 C and is attracting the red box with a force of 626 Newtons. Determine charge of the red box. Remember to indicate if it is positive or negative.
5. A piece of styrofoam has a charge of -0.004 C and is placed 3 m from a piece of salt with a charge of -0.003 C . How much electrostatic force is produced?

12,000 N
6. If you put in 10 joules of work to push 1 coulomb of charge against an electric field, what will be its voltage with respect to its starting position?
7. What is the voltage at the location of a 0.0001 C charge that has an electric potential energy of 0.5 J ?

5000 V
8. How much electrical potential energy is given to each coulomb of charge that flows through a 1.5 volt battery?
1.5 J
9. What voltage is produced by a balloon with 35 J of electric potential energy and containing 0.0005 C of charge?
10. A balloon may be charged to several thousand volts. Does this mean it has several thousand joules of energy? Explain your answer.
11. How much charge is carried by a $120,000,000$ volt lightning bolt? The electric potential energy of the built up charge before it discharged as lightning was $3,000,000,000 \mathrm{~J}$.

19 Three points, (a, b, c) are indicated on each electric field pattern.
Point a in each pattern shows the electric field vector at that point. The vector indicates the magnitude and direction of the force that a positive test charge would experience at that point (a curved field indicates that the force on a nearby test charge would be different in magnitude and direction). Use the vector at points a as a reference and sketch in the electric field vectors for points b and c in each pattern, using colored ink

a.

C.

b.

d.

Conceptual \quad M \rightarrow —

