Great Mighty King Henry Died monday drinking chocolate milk maybe no one noticed Giga \qquad Mega \qquad Kilo Hecto Deka baseunit deci centi milli_ \qquad micro \qquad nano \qquad pico (meter)

G-	M-	K-	$H-$	$D-$ ordk- m, g, L, S	$d-$	c-	$m-$	$\mu-$	n-	p-	
10^{9}	10^{6}	1000	100	10	1	0.1	0.01	0.001	10^{-6}	10^{-9}	10^{-12}

NOTE: The dashes in the scale above represent other prefixes not shown. They must be included when moving decimal spaces.

SI (metric) measurement system and the United States Customary Systems (USCS)

Equivalents

You are expected to memorize the boldface prefixes and their values. The other information you are expected to use this sheet for until you "learn by using."

1 giga (G)	$=$	$1,000,000,000$	meters
1 mega (M)	$=$	$1,000,000$	meters
$\mathbf{1}$ kilo (\mathbf{k})	$=$	1,000	meters
$\mathbf{1}$ hecto (\mathbf{h})	$=$	100	meters
$\mathbf{1}$ deka $(\mathbf{d a})$	$=$	10	meters
base $($ none $)$	$=$	1	meters
$\mathbf{1}$ deci (\mathbf{d})	$=$	0.1	meters
$\mathbf{1}$ centi (\mathbf{c})	$=$	0.01	meters
$\mathbf{1}$ milli (\mathbf{m})	$=$	0.001	meters
1 micro (μ)	$=$	0.000001	meters
1 nano (n)	$=$	0.000000001	meters
1 pico (p)	$=$	0.000000000001 m	

Equivalents

$1 \mathrm{in}=2.54 \mathrm{~cm}$	$1 \mathrm{~m}=39.37 \mathrm{in}$	$1 \mathrm{ft}^{2}=929 \mathrm{~cm}^{2}$
$1 \mathrm{gal}=3.78 \mathrm{~L}$	$1 \mathrm{hp}=746 \mathrm{~W}$	$1 \mathrm{~m}^{3}=264 \mathrm{gal}$
$1 \mathrm{lb}=4.45 \mathrm{~N}$	$5 \mathrm{~km}=3.1 \mathrm{mi}$	$1 \mathrm{gal}=3785.5 \mathrm{~cm}^{3}$
$1 \mathrm{~m}=3.28 \mathrm{ft}$	$1^{\circ} \mathrm{C}=1.8^{\circ} \mathrm{F}$	$1 \mathrm{~kg}=9.81 \mathrm{~N}$
$1 \mathrm{mi}=5280 \mathrm{ft}$	$1 \mathrm{gal}=400 \mathrm{ft}^{2}$	

Metric Conversion

$\mathbf{K}_{\text {ing }}$ Kilo	$H_{\text {enry }}$ Hecto	$D_{\text {oesn't }}$ Deka	$\mathbf{U}_{\text {sually }}$ Base Unit	$D_{\text {rink }}$ Deci	Chocolate Centi	$M_{i l k}$ Milli
$\begin{aligned} & \text { 1000x } \\ & \text { larger than a unit } \end{aligned}$	$\begin{array}{c\|c\|} 100 \mathrm{x} \\ \text { larger than a unit } \end{array}$	$\stackrel{10 \mathrm{x}}{\substack{\text { larger than } \mathrm{a} \\ \text { unit }}}$	Meter (length) Liter (liquid volume)	$\begin{gathered} 10 \mathrm{x} \\ \text { smaller than a } \\ \text { unit } \end{gathered}$	$\left\lvert\, \begin{gathered} 100 \mathrm{x} \\ \text { smaller than a unit } \end{gathered}\right.$	$\begin{gathered} 1000 \mathrm{x} \\ \text { smallerthan a } \\ \text { unit } \end{gathered}$
$\begin{aligned} & 1 \text { kilo }= \\ & 1,000 \text { units } \end{aligned}$	1 hecto = 100 units	1 deka $=$ 10 units	Gram (mass/weight) 1 unit	$\begin{aligned} & 10 \mathrm{deci} \\ & =1 \text { unit } \end{aligned}$	$\begin{aligned} & 100 \text { centi } \\ & =1 \text { unit } \end{aligned}$	$\underset{\text { unit }}{1,000 \text { milli }=1}$
${ }_{\substack{\text { a }}}^{2 \text { meters }}$		${ }_{\substack{2 \\ .2 \text { deteramereers }}}^{2}$		$\underbrace{2}_{\substack{20 \\ 20 \text { deteresmeers }}}$	${ }_{\substack{200 \\ 20 \text { centers } \\ \\ \text { 2neters }}}$	

DIVIDE numbers by a power of 10 when going from SMALLER to LARGER.

MULTIPLY number by a power of 10 when going from LARGER to SMALLER

Scientific Notation to Numbers

Scientific Notation involves moving decimals.
7.74521×10^{5}
$=7.745 .21$
$=774521$
Because the exponent is Positive 5, move the decimal point 5 places to the right.
No Zeroes needed to fill empty gaps.

$$
\begin{aligned}
& 6 \times 10^{-3} \\
= & 0006 . \\
= & 0.006
\end{aligned}
$$

> Because the exponent is a Negative 3 , move the decimal point 3 places to the left.
> Add in Zeroes to fill the empty gaps.

