BULLSEYE (Everything Else)

\qquad
Projectile Motion • Weight =1

DIRECTIONS: Complete the lab data below. You will get some of the values you need by measuring and some by calculating. Below is the formula bank with all the formulas you will need. NOTE: Show your work on the calculation problems for partial credit.

FORMULA BANK		
Horizontal Motion Formulas:	$x= \pm v_{x 0} \cdot t \pm 1 / 2 \cdot a \cdot t^{2}$	$v= \pm \mathrm{v}_{\mathrm{xo}} \pm \mathrm{a} \cdot \mathrm{t}$
x is horizontal distance, v_{xo} is initial horizontal velocity, t is time, a is acceleration, v is final velocity		
Vertical Motion Formulas:	$y=y_{0} \pm v_{\mathrm{yo}} \cdot \mathrm{t}-1 / 2 \cdot g \cdot \mathrm{t}^{2}$	$v_{\mathrm{y}}= \pm \mathrm{v}_{\mathrm{yo}}-\mathrm{g} \cdot \mathrm{t}$
y is final height, y_{0} is initial height, v_{y} is initial vertical velocity, t is time, g is acceleration due to gravity, v_{y} is final vertical velocity		

Length of ramp, x_{r} (in m) that the marble rolls down	Height of table, \mathbf{y}_{f} (in m) above ground	Horizontal distance, x, from table to target (in m), where the marble falls	Time, t_{r} (in s) to roll down the ramp to edge of table	Time, t_{f} (in s) marble is in the air after rolling off the table	Acceleration, a, of marble down the ramp (in $\mathrm{m} / \mathrm{s} / \mathrm{s}$)	Horizontal velocity, v_{x}, of the marble (in m / s) when it flies off the table \qquad	Final vertical velocity, v_{y}, of the marble (in m / s) when it lands.	Final diagonal velocity, v_{f}, of the marble (in m / s) when it lands.

Work:

